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Dynamical localization and partial-barrier localization in the Paul trap
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We investigate the nature of quantum localization exhibited by the center-of-mass motion of an ion in a Paul
trap interacting with a standing laser field. Depending upon system parameters and the initial location of the
ion, quantum suppression of chaotic diffusion is dominated by dynamical localization or localization due to
partial barriers formed of broken separatrices and cantori.

PACS number~s!: 05.45.Mt, 03.65.Sq, 32.80.Lg
an
os
d
th
sy
w
ffu
fe
ic
,

p

a

as

li
se
s
oe
on
a
t
ve
en

ar
ic

an
a
al
e

nc
n
as
f t
n

s to
is

tori
se-
an
on
the
-

st

,
in

ing
lso
i-
o-
y-
in

e
liza-

of

um
ve
of
cent

a
sis

rd
ing

a-

on
al-
dy-
ap
em
I. INTRODUCTION

The phenomenon of quantum localization, i.e., the qu
tum suppression of classical diffusion, is one of the m
important features of quantum dynamics and is expecte
play a key role in our understanding of the issue of
quantum-classical correspondence in classically chaotic
tems @1,2#. Investigations have revealed that there are t
distinct quantum effects that act to suppress chaotic di
sion. One is dynamical localization, a pure quantum inter
ence effect which is not affected by the structure of class
phase space, and the other is partial barrier localization
effect due to partial barriers formed of broken tori~cantori!
and/or broken separatrices, remnants of classical phase-s
structure.

Dynamical localization in classically chaotic systems w
first discovered by Casatiet al. @3# in their investigation of
the kicked rotor. The phenomenon can be understood
dynamical version of Anderson localization in solids@4# and
is thus as fundamental a phenomenon as quantum tunne
It works in a sense opposite to quantum tunneling, becau
states that there exists a part of phase space which clas
dynamics allows us to explore but quantum dynamics d
not. Intense theoretical and experimental investigati
@5–9# that followed the numerical observation of dynamic
localization by Casatiet al. have proved convincingly tha
dynamical localization manifests itself also in microwa
ionization of Rydberg hydrogen atoms. A recent experim
tal investigation@10,11# of momentum transfer in ultracold
atoms interacting with a standing-wave field, in particul
has provided a direct experimental observation of dynam
localization in the periodically driven rotor system@12#.

Partial barrier localization occurs because quantum
classical propagations through partial barriers formed of c
tori or broken separatrices can be vastly different. Classic
the partial barriers act to slow down diffusion, although th
cannot completely block the flow@13#. Quantum mechani-
cally, however, since any structure smaller than the Pla
constanth is not recognized in the quantum world, the ca
tori or broken separatrices act as perfect barriers if the ph
space area of flux escaping through them each period o
perturbing force is smaller thanh. Thus, quantum effects ca
PRE 611063-651X/2000/61~5!/5124~5!/$15.00
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suppress classical chaotic diffusion through partial barrier
the level of quantum tunneling. Partial-barrier localization
important especially when the size of the holes in the can
or the broken separatrices is relatively small and con
quently when the classical diffusion rate is small. One c
thus expect a strong effect of partial-barrier localizati
when system parameters take on values slightly above
critical values at which the breakup of Kolmogorov-Arnol’d
Moser ~KAM ! tori or separatrices in the region of intere
takes place.

It has been shown@14# that partial-barrier localization
especially cantori localization, can play an important role
a quantum description of a wave packet motion model
multiphoton dissociation of a diatomic molecule. It has a
been argued@15,16# that the localization seen in the numer
cal simulation of the kicked rotor and of the Rydberg hydr
gen atom in a microwave field, attributed generally to d
namical localization, can be explained at least in part
terms of cantori inhibiting the diffusive motion. It can b
suggested, for example, that the expression for the loca
tion length found for the kicked rotor@17# in the region of
small diffusion rates can be derived using the concept
cantori localization. There has even been some question@18#
over whether the localization observed in the moment
transfer experiment of ultracold atoms in a standing-wa
field is indeed dynamical localization. The importance
cantori localization has been emphasized in some very re
studies. For example, Borgonovi@19# has shown that dy-
namical localization and cantori localization can coexist in
discontinuous perturbed twist map for which the hypothe
of the KAM theorem is not satisfied. Casati and Prosen@20#
have shown that the quantum motion in the stadium billia
is dominated by dynamical or cantori localization depend
on the shape of the stadium. Finally, Vantet al. @21# reported
experimental observation of cantori localization with ultr
cold atoms subjected to a train of double pulses.

In this paper, we report our study of quantum localizati
in a system which we believe exhibits partial-barrier loc
ization due to broken separatrices and cantori as well as
namical localization. The system is an ion in a Paul tr
interacting with a standing laser field. It is the same syst
considered recently by Ghafaret al. @22#. Although Ghafar
5124 ©2000 The American Physical Society
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et al. interpreted their results solely in terms of dynamic
localization, a close inspection of the classical phase-sp
structure and associated quantum probability distribution
phase space indicates that localization due to broken sep
trices and cantori cannot generally be ignored.

II. THE SYSTEM AND ITS CLASSICAL
PHASE-SPACE STRUCTURE

Let us consider the center-of-mass motion of an ion i
Paul trap interacting with a standing laser field. The Ham
tonian describing the motion is given by

Ĥ5
1

2m
p̂21

mv2

8
~a12q cosv t̂ !x̂21

1

2
\vaŝz

1\V0ŝx cos~kx̂1f!cosvL t̂ , ~1!

wherep̂, x̂, and t̂ denote the momentum, position, and tim
m is the mass of the ion,a and q denote the dc and a
voltages applied to the trap,v is the frequency of the ac
voltage,vL andk represent the frequency and the wave v
tor of the standing laser field assumed to be aligned along
x axis,va is the atomic transition frequency,V0 is the Rabi
frequency,f is the phase of the standing wave, andŝz and
ŝx are Pauli spin matrices. In order to avoid decohere
arising from spontaneous emission@23,24# and thereby focus
on the issue of quantum localization, we assume that the
is initially in its ground state and that the detuningD5vL
2va is large. Equation~1! can then be reduced, under th
rotating-wave approximation, to the dimensionless form@22#

H5
16k2

mv2
Ĥ5

1

2
p21

1

2
~a12q cos 2t !x21V cosx, ~2!

where the phase f is taken to be zero, V
52\k2V0

2/mv2D is the effective coupling constant for th
ion-laser interaction, andp, x, and t are, respectively, di-
mensionless momentum, position, and time defined ap

5(4k/mv) p̂, x52kx̂, and t5v t̂ /2. We note that, in terms
of the dimensionless quantities, the Schro¨dinger equation
reads i\e f f]c(x,t)/]t5Hc(x,t) where \e f f58k2\/mv.
Thus, the parameter 2p\e f f is the effective Planck constan

It has been shown@25# that the classical motion of the io
described by the Hamiltonian, Eq.~2!, can be chaotic. We
show in Fig. 1 the classical Poincare´ surface of section for
the casea50, q50.4, andV50.65, which indicates tha
most of the phase space is covered with a chaotic sea.
two stable islands are located around the phase pointsx5
6p,p50), which correspond to the minima of the standi
laser field. With the ac voltage supplying the external drivi
force, the origin (0,0) is an unstable~hyperbolic! fixed point
and its stable and unstable manifolds form homocli
tangles. As is well known, segments of stable and unsta
manifolds of hyperbolic orbits form the boundaries betwe
regions of qualitatively different types of motion. The part
barriers formed from these segments of broken separat
act to slow down classical diffusion from one such region
another. Quantum mechanically, however, the broken se
ratrices act as perfect barriers, if the phase-space area o
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escaping through the broken separatrices each period of
ing force is smaller than the Planck constanth.

Figure 2 shows the stable and unstable manifolds of
hyperbolic point of our system. The phase-space area of
through the partial barriers each period of the driving force
measured by the size of the ‘‘turnstile’’@13# denoted byDW
in the figure. Since the primary intersection pointA in Fig. 2
maps into the pointB after one period of the applied a
voltage, the phase-space area of flux through the bro
separatrices during one period amounts to 2DW (DW
.0.25), and is smaller than 2p\e f f (51.82). We thus ex-
pect that the broken separatrices act as strong barriers q
tum mechanically.

III. QUANTUM LOCALIZATION

Now we present results of our classical and quantum m
chanical computations of the time evolution of a Gauss
wave packet which represents the ion described by
Hamiltonian of Eq.~2!. For all our results reported here,a
50, q50.4, V50.65, and 2p\e f f51.82. In order to inves-
tigate quantum localization, we place the initial wave pac
at a phase point in the chaotic sea. All the points in
chaotic sea are, however, not the same. From the prece

FIG. 1. Poincare´ surface of section for the ion described by th
Hamiltonian, Eq.~2!. The dimensionless system parameters ara
50, q50.4, andV50.65. The solid curves nearp.63.5 corre-
spond to the golden mean KAM tori for a system governed by
Hamiltonian~2! with a5q50. The separatrices of this system a
also displayed.

FIG. 2. Stable and unstable manifolds of the hyperbolic po
(0,0). PointA is the primary homoclinic point and maps into poi
B after one period.DW represents the area of the turnstile and t
box in the upper left corner shows the area of the Planck cons
2p\e f f . All parameters are the same as in Fig. 1.
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discussion, we expect the wave packet initially located alo
or inside the stable and unstable manifolds of the hyperb
point to exhibit a strong effect of partial barriers formed fro
broken separatrices. This will be the case, for example, f
wave packet centered at the origin (0,0), for which Gha
et al. @22# reported results of their calculation. On the oth
hand, a wave packet centered initially at (10,0), for exam
will not be much affected by the partial barriers. We the
fore have performed our calculations for the two positions
the initial wave packet, (0,0) and (10,0). Comparison of
result for the two different initial positions will help to dis
tinguish the effect of dynamical localization from the effe
of partial-barrier localization.

Shown in Fig. 3~a! are classical and quantum time evol
tions of the momentum spreadDp of a wave packet tha
started its motion at (0,0). Figure 3~b! shows the same plo
for the wave packet centered initially at (10,0). We clea
see quantum localization in both cases. While the class
momentum spread continues to increase with time, the qu

FIG. 3. Time evolution of momentum spreadDp(t) calculated
classically~upper curve! and quantum mechanically~lower curve!
for the wave packet located initially at~a! (0,0) and~b! (10,0). In
order to remove fast oscillations we have averaged over one pe
of the driving force. All parameters are the same as in Fig. 1
2p\e f f51.82.

FIG. 4. Quantum~solid curve! and classical~dashed curve! dis-
tributions averaged over time in an interval@450p,500p#. ~a! and
~b! are, respectively, momentum and position distributions for
wave packet that started at (0,0), and~c! and ~d! are, respectively,
momentum and position distributions for the wave packet t
started at (10,0). All parameters are the same as in Fig. 1
2p\e f f51.82. The vertical dashed and solid lines correspond to
locations of the broken separatrices and of the golden mean K
tori, respectively.
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tum diffusion saturates after some time. As shown by Gha
et al. @22#, the classical momentum and position sprea
Dp2 andDx2, of the system described by the Hamiltonian
Eq. ~2! scale approximately ast1/2. Our system therefore ex
hibits anomalous classical diffusion, and it is this anomalo
diffusion that is suppressed in the quantum description.
spite the similarity between Figs. 3~a! and 3~b!, the momen-
tum and position distributions at large times exhibit cle
differences for the two wave packets, as explained below

We plot in Figs. 4~a! and 4~b! the momentum distribution
P(p) and the position distributionP(x) averaged over time
in an interval@450p,500p# around t5475p for the wave
packet located initially at (0,0). In Figs. 4~c! and 4~d! we
show the same plot for the wave packet located initially
(10,0). All four figures show that quantum distributions a
narrower than the corresponding classical distributions, c
firming that quantum localization takes place. Note, ho
ever, that the effects of the partial barriers formed of brok
separatrices are clearly discernible in Figs. 4~a! and 4~b! with
shoulders appearing on the line shape at the location of
barriers indicated by dashed vertical lines. The solid verti
lines in Fig. 4~a! indicate the positions of the golden mea
KAM tori of undriven system (q5a50). It appears that the
remnants of these tori act to further suppress the diffus
motion which was first suppressed by the partial barri
formed of broken separatrices. As expected, the time ev
tion of the wave packet localized initially at (0,0) exhibi
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e

t
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M

FIG. 5. Classical momentum distributions averaged over
period at t54p ~solid curve!, t514p ~dashed curve!, and t
549p ~dotted curve! for the wave packet that started at (0,0). F
comparison the classical momentum distribution of Fig. 4~a! is also
presented~dot-dashed curve!. The vertical dashed and solid line
correspond to the locations of the broken separatrices and of
golden mean KAM tori, respectively.

FIG. 6. Contour plot of the Husimi distribution of the wav
packet att5450p which was initially located at~a! (0,0) and~b!
(10,0). The thick curves show stable and unstable manifolds.
parameters are the same as in Fig. 1 and 2p\e f f51.82.
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strong effects of the partial barriers formed from brok
separatrices as well as from cantori. Similar structures
momentum distribution were also observed in a recent
perimental study@21# of cantori localization. It should be
noted that the localization observed here cannot be expla
by the initial probability of the wave packet at (0,0) being
the two stable islands and nearby island chains, becaus
probability is negligibly small~less than 1023). In contrast to
Figs. 4~a! and 4~b!, Figs. 4~c! and 4~d! show a relatively flat
region around the origin surrounded by an exponentially
creasing distribution. There is no evidence for partial bar
localization by broken separatrices here, and thus the e
nential localization exhibited in Figs. 4~c! and 4~d! can be
attributed to dynamical localization.

The classical distributions at the large timet5475p
shown in Fig. 4 are smooth and do not seem to indicate
presence of the partial barriers. In order to display clearly
effect of the partial barriers on classical transport, we pres
in Fig. 5 classical momentum distributions at earlier tim
The appearance of shoulders in these distributions indi
that the partial barriers formed of cantori and of broken se
ratrices slow down classical propagation through them.
time becomes large, however, the shoulders disappear gr
ally and the distribution becomes smooth.

The role of the broken separatrices as a strong barrie
the flow can be seen more clearly from Figs. 6~a! and 6~b!,
where the Husimi distribution@26# of the wave packet att
5450p are plotted for the initial wave packet positions

FIG. 7. Time evolution of autocorrelation calculated quantu
mechanically~solid curve! and classically~dashed curve! for the
wave packet which was located initially at (0,0). The inset sho
an expanded view during early times. All parameters are the s
as in Fig. 1 and 2p\e f f51.82.

FIG. 8. Same as Fig. 3~a! except 2p\e f f50.182.
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(0,0) and (10.0), respectively. The two probability distrib
tions are well separated from each other, indicating that
broken separatrices form strong barriers.

One may wonder whether the localization along the sta
and unstable manifolds of the unstable fixed point seen h
can be attributed to scarring@27#. We see from Fig. 7, how-
ever, that the quantum autocorrelation for the wave pac
starting at (0,0) exhibits strong persistent recurrences, i
cating that the localization seen here is too strong to be
plained by linear scar theory@28#. Also shown in Fig. 7 is the
time evolution of the classical autocorrelation function of t
wave packet starting at (0,0). Since the local Lyapunov
ponent at (0,0), the instability exponent of its unstable ma
folds, is very large, the classical autocorrelation decay
tremely rapidly. We mention here that we have al
computed the quantum and classical autocorrelation fu
tions for the wave packet starting at (10,0) and found th
to decay extremely rapidly with time. That only the quantu
autocorrelation for the wave packet starting at (0,0) show
strong recurrent behavior is another indication that brok
separatrices act as strong barriers.

The partial-barrier localization depends on the condit
that the phase-space area of the flux through the partial
riers, i.e., the size of the turnstile, is smaller than the Pla
constanth ~or the effective Planck constant 2p\e f f in our
case!. In order to check on this, we have repeated the ca
lation for the wave packet located initially at (0,0) with
new value 2p\e f f50.182 while keeping all other paramete
unchanged. The results of the calculation are displayed
Figs. 8 and 9. As expected quantum momentum and pos
distributions are narrower than the corresponding class
distributions and thus quantum localization still exists in th
case, too. We note, however, that double-slope structure
in Figs. 4~a! and 4~b! are totally missing in the quantum
momentum and position distributions of Figs. 9~a! and 9~b!.
This indicates that the partial barriers formed from brok
separatrices and cantori are no longer impermeable bar
quantum mechanically as well as classically. The quant
localization indicated in Figs. 8 and 9 can thus be attribu
to dynamical localization.

In conclusion we have shown that the center-of-mass m
tion of an ion in a Paul trap interacting with a standing las
field exhibits both partial-barrier localization and dynamic
localization. Which type of localization dominates depen
critically upon system parameters that determine the ph
space area of the flux through the partial barriers and u
the initial location of the ion.

s
e

FIG. 9. Same as Figs. 4~a! and 4~b! except 2p\e f f50.182.
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