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Dynamical localization and partial-barrier localization in the Paul trap
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We investigate the nature of quantum localization exhibited by the center-of-mass motion of an ion in a Paul
trap interacting with a standing laser field. Depending upon system parameters and the initial location of the
ion, quantum suppression of chaotic diffusion is dominated by dynamical localization or localization due to
partial barriers formed of broken separatrices and cantori.

PACS numbegps): 05.45.Mt, 03.65.Sq, 32.80.Lg

[. INTRODUCTION suppress classical chaotic diffusion through partial barriers to
the level of quantum tunneling. Partial-barrier localization is
The phenomenon of quantum localization, i.e., the quanimportant especially when the size of the holes in the cantori
tum suppression of classical diffusion, is one of the mosbr the broken separatrices is relatively small and conse-
important features of quantum dynamics and is expected tquently when the classical diffusion rate is small. One can
play a key role in our understanding of the issue of thethus expect a strong effect of partial-barrier localization
guantum-classical correspondence in classically chaotic sysvhen system parameters take on values slightly above the
tems[1,2]. Investigations have revealed that there are twccritical values at which the breakup of Kolmogorov-Arnol'd-
distinct quantum effects that act to suppress chaotic diffuMoser (KAM) tori or separatrices in the region of interest
sion. One is dynamical localization, a pure quantum interfertakes place.
ence effect which is not affected by the structure of classical It has been showl14] that partial-barrier localization,
phase space, and the other is partial barrier localization, aaspecially cantori localization, can play an important role in
effect due to partial barriers formed of broken t@antor) a quantum description of a wave packet motion modeling
and/or broken separatrices, remnants of classical phase-spaueltiphoton dissociation of a diatomic molecule. It has also
structure. been arguefll5,14 that the localization seen in the numeri-
Dynamical localization in classically chaotic systems wascal simulation of the kicked rotor and of the Rydberg hydro-
first discovered by Casaét al. [3] in their investigation of gen atom in a microwave field, attributed generally to dy-
the kicked rotor. The phenomenon can be understood asramical localization, can be explained at least in part in
dynamical version of Anderson localization in solidd and  terms of cantori inhibiting the diffusive motion. It can be
is thus as fundamental a phenomenon as quantum tunnelinguiggested, for example, that the expression for the localiza-
It works in a sense opposite to quantum tunneling, because fiton length found for the kicked rotdrl7] in the region of
states that there exists a part of phase space which classichall diffusion rates can be derived using the concept of
dynamics allows us to explore but quantum dynamics doesantori localization. There has even been some quegti®in
not. Intense theoretical and experimental investigation®ver whether the localization observed in the momentum
[5-9] that followed the numerical observation of dynamical transfer experiment of ultracold atoms in a standing-wave
localization by Casatet al. have proved convincingly that field is indeed dynamical localization. The importance of
dynamical localization manifests itself also in microwave cantori localization has been emphasized in some very recent
ionization of Rydberg hydrogen atoms. A recent experimenstudies. For example, Borgonofl9] has shown that dy-
tal investigation[10,11] of momentum transfer in ultracold namical localization and cantori localization can coexist in a
atoms interacting with a standing-wave field, in particular,discontinuous perturbed twist map for which the hypothesis
has provided a direct experimental observation of dynamicabf the KAM theorem is not satisfied. Casati and Profgj
localization in the periodically driven rotor systgrm2]. have shown that the quantum motion in the stadium billiard
Partial barrier localization occurs because quantum andg dominated by dynamical or cantori localization depending
classical propagations through partial barriers formed of canen the shape of the stadium. Finally, Vatal.[21] reported
tori or broken separatrices can be vastly different. Classicallgxperimental observation of cantori localization with ultra-
the partial barriers act to slow down diffusion, although theycold atoms subjected to a train of double pulses.
cannot completely block the floll3]. Quantum mechani- In this paper, we report our study of quantum localization
cally, however, since any structure smaller than the Plancin a system which we believe exhibits partial-barrier local-
constanth is not recognized in the quantum world, the can-ization due to broken separatrices and cantori as well as dy-
tori or broken separatrices act as perfect barriers if the phas@amical localization. The system is an ion in a Paul trap
space area of flux escaping through them each period of thateracting with a standing laser field. It is the same system
perturbing force is smaller tham Thus, quantum effects can considered recently by Ghafet al. [22]. Although Ghafar
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et al. interpreted their results solely in terms of dynamical
localization, a close inspection of the classical phase-space
structure and associated quantum probability distributions in
phase space indicates that localization due to broken separa-
trices and cantori cannot generally be ignored.

Il. THE SYSTEM AND ITS CLASSICAL
PHASE-SPACE STRUCTURE

Let us consider the center-of-mass motion of an ion in a
Paul trap interacting with a standing laser field. The Hamil-
tonian describing the motion is given by

FIG. 1. Poincaresurface of section for the ion described by the
Hamiltonian, Eq.(2). The dimensionless system parametersaare
=0, q=0.4, andQ)=0.65. The solid curves negr=+3.5 corre-

. R ~ spond to the golden mean KAM tori for a system governed by the
+hQgoy cOgKkX+ P)cosw, t, (1) Hamiltonian(2) with a=q=0. The separatrices of this system are

also displayed.

wherep, x, andt denote the momentum, position, and time,

m is the mass of the iona and q denote the dc and ac escaping through the broken separatrices each period of driv-

voltages applied to the trapy is the frequency of the ac ing force is smaller than the Planck constant

voltage,w, andk represent the frequency and the wave vec- Figure 2 shows the stable and unstable manifolds of the

tor of the standing laser field assumed to be aligned along thieyperbolic point of our system. The phase-space area of flux

X axis, w, is the atomic transition frequencg), is the Rabi  through the partial barriers each period of the driving force is

frequency,¢ is the phase of the standing wave, andand ~ Measured by the size of the “turnstil¢13] denoted byAW
frx are Pauli spin matrices. In order to avoid decoherencé! the figure. Since the primary intersection pofain Fig. 2

arising from spontaneous emissi®8,24] and thereby focus Mmaps into the poinB after one period of the applied ac

on the issue of quantum localization, we assume that the ioKOIta?et’rithe pdharisr:a—spice arciia dOf frl::x ;r:ro%%hvéhivl\)/roken
is initially in its ground state and that the detunig= o separafrices - during oné period. amounts (

—w, is large. Equatior(1) can then be reduced, under the :O‘tztl‘;)’t"’:ﬂd LS skmaller tharr_%eff (:tl‘SZt)‘ Webthu_s ex
rotating-wave approximation, to the dimensionless Q22 pect that the broken separalrices act as strong barriers quan-
tum mechanically.

H= 1A2+mw2 +2 EA2+1h o
= 5m 8 (a+2qcoswt)x 5hwaoy

16k, 1 1
H=—H=5p*+ > (a+2qcos2)x*+ Q cosx, (2) IIl. QUANTUM LOCALIZATION
Mw

Now we present results of our classical and quantum me-
where the phase¢ is taken to be zero, Q)  chanical computations of the time evolution of a Gaussian
=21ik?(2*/mw?A is the effective coupling constant for the wave packet which represents the ion described by the
ion-laser interaction, ang, x, andt are, respectively, di- Hamiltonian of Eq.(2). For all our results reported hera,
mensionless momentum, position, and time definedpas =0, q=0.4, 2=0.65, and 2r#i.¢;=1.82. In order to inves-
= (4k/mw)p, x=2kX, andt=wt/2. We note that, in terms tigate quantum localization, we place the initial wave packet
of the dimensionless quantities, the Salinger equation at a phase point in the chaotic sea. All the points in the
reads i%iqsd(X,t)/dt=Hy(x,t) where #.=8k’%#/mw.  chaotic sea are, however, not the same. From the preceding
Thus, the parameteri2hi ¢ is the effective Planck constant.

It has been show[25] that the classical motion of the ion 2 ————
described by the Hamiltonian, E@), can be chaotic. We —/ 1
show in Fig. 1 the classical Poincaserface of section for 11 AW B i
the casea=0, q=0.4, andQ)=0.65, which indicates that i |
most of the phase space is covered with a chaotic sea. The Pol A |

two stable islands are located around the phase poiats (
+,p=0), which correspond to the minima of the standing
laser field. With the ac voltage supplying the external driving
force, the origin (0,0) is an unstablbyperbolig fixed point
and its stable and unstable manifolds form homoclinic -2 S U —
tangles. As is well known, segments of stable and unstable
manifolds of hyperbolic orbits form the boundaries between
regions of qualitatively different types of motion. The partial £, 2. Stable and unstable manifolds of the hyperbolic point

barriers formed from these segments of broken separatricgg,0). PointA is the primary homoclinic point and maps into point
act to slow down classical diffusion from one such region toB after one periodAW represents the area of the turnstile and the

another. Quantum mechanically, however, the broken sepaox in the upper left corner shows the area of the Planck constant
ratrices act as perfect barriers, if the phase-space area of fl@«#.¢¢. All parameters are the same as in Fig. 1.
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FIG. 3. Time evolution of momentum spreag(t) calculated p
classically(upper curvé and quantum mechanicallyjower curve
for the wave packet located initially &) (0,0) and(b) (10,0). In FIG. 5. Classical momentum distributions averaged over one

order to remove fast oscillations we have averaged over one periogeriod att=4m (solid curvg, t=14x (dashed curve and t
of the driving force. All parameters are the same as in Fig. 1 and=49w (dotted curvg for the wave packet that started at (0,0). For
27hes=1.82. comparison the classical momentum distribution of Fig) 4 also
presenteddot-dashed curye The vertical dashed and solid lines
discussion, we expect the wave packet initially located a|0n§orrespond to the locations of the broken separatrices and of the
or inside the stable and unstable manifolds of the hyperboligolden mean KAM tori, respectively.
point to exhibit a strong effect of partial barriers formed from
broken separatrices. This will be the case, for example, for &um diffusion saturates after some time. As shown by Ghafar
wave packet centered at the origin (0,0), for which Ghafaret al. [22], the classical momentum and position spreads,
et al. [22] reported results of their calculation. On the otherAp? andAx?, of the system described by the Hamiltonian of
hand, a wave packet centered initially at (10,0), for exampleEq. (2) scale approximately as’?. Our system therefore ex-
will not be much affected by the partial barriers. We there-hibits anomalous classical diffusion, and it is this anomalous
fore have performed our calculations for the two positions ofdiffusion that is suppressed in the quantum description. De-
the initial wave packet, (0,0) and (10,0). Comparison of thespite the similarity between Figs(é88 and 3b), the momen-
result for the two different initial positions will help to dis- tum and position distributions at large times exhibit clear
tinguish the effect of dynamical localization from the effect differences for the two wave packets, as explained below.
of partial-barrier localization. We plot in Figs. 4a) and 4b) the momentum distribution
Shown in Fig. 8a) are classical and quantum time evolu- P(p) and the position distributiof?(x) averaged over time
tions of the momentum spreatlp of a wave packet that in an interval[4507,5007] aroundt=4757 for the wave
started its motion at (0,0). Figure€l8 shows the same plot packet located initially at (0,0). In Figs(e and 4d) we
for the wave packet centered initially at (10,0). We clearlyshow the same plot for the wave packet located initially at
see gquantum localization in both cases. While the classicd[10,0). All four figures show that quantum distributions are
momentum spread continues to increase with time, the quamarrower than the corresponding classical distributions, con-
firming that quantum localization takes place. Note, how-
ever, that the effects of the partial barriers formed of broken
separatrices are clearly discernible in Fige)and 4b) with
P(x) shoulders appearing on the line shape at the location of the
barriers indicated by dashed vertical lines. The solid vertical
lines in Fig. 4a) indicate the positions of the golden mean
KAM tori of undriven system §=a=0). It appears that the
" remnants of these tori act to further suppress the diffusive
4 motion which was first suppressed by the partial barriers
formed of broken separatrices. As expected, the time evolu-
tion of the wave packet localized initially at (0,0) exhibits
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FIG. 4. Quantunysolid curve and classicaldashed curvedis-
tributions averaged over time in an interyd507,5007]. (@) and . '
(b) are, respectively, momentum and position distributions for the T 0 10 20 H0 0 10 =20 °
wave packet that started at (0,0), ayl and(d) are, respectively, q
momentum and position distributions for the wave packet that
started at (10,0). All parameters are the same as in Fig. 1 and FIG. 6. Contour plot of the Husimi distribution of the wave
2mhets=1.82. The vertical dashed and solid lines correspond to thenacket att =450 which was initially located ata) (0,0) and(b)
locations of the broken separatrices and of the golden mean KAM10,0). The thick curves show stable and unstable manifolds. All
tori, respectively. parameters are the same as in Fig. 1 andt &;=1.82.




PRE 61 DYNAMICAL LOCALIZATION AND PARTIAL-BARRIER ... 5127

1.0 T y T T 107 ( )
a
P(p) P(x)
NT J\/\M , 10%
fran 10°
; 05¢ 0 20
=3
> 3] e 3
%A 10""30 0 30 50 0 50 10
3 | p X
0.0 = . . . .
0 100 200 300 400 FIG. 9. Same as Figs(@ and 4b) except 27%;;=0.182.

Vr

FIG. 7. Time evolution of autocorrelation calculated quantum

mechanically(solid curvg and classically(dashed curvefor the  (0,0) and (10.0), respectively. The two probability distribu-

wave packet which was located initially at (0,0). The inset showstions are well separated from each other, indicating that the

an expanded view during early times. All parameters are the samgrgken separatrices form strong barriers.

asin Fig. 1 and fie=1.82. One may wonder whether the localization along the stable
and unstable manifolds of the unstable fixed point seen here
can be attributed to scarrifg@7]. We see from Fig. 7, how-

strong effects of the partial barriers formed from brokeneyer, that the quantum autocorrelation for the wave packet

separatrices as well as from cantori. Similar structures istarting at (0,0) exhibits strong persistent recurrences, indi-

momentum distribution were also observed in a recent €Xgating that the localization seen here is too strong to be ex-

perimental study[21] of cantori localization. It should be plained by linear scar theof28]. Also shown in Fig. 7 is the

noted t.hff‘t. the Iocali;_ation observed here cannot be ex.plai.ne[qne evolution of the classical autocorrelation function of the
by the initial probability of the wave packet at (0,0) being in wave packet starting at (0,0). Since the local Lyapunov ex-

the two stable islands and nearby island chains, because t ; . . N
probability is negligibly smallless than 10%). In contrast to B%nent at (0,0), the instability exponent of its unstable mani

Figs. 4a) and 4b), Figs. 4c) and 4d) show a relatively flat Iolds, I|s verydllargs\,/ the clat§3|c:a|I1 autoi:r?r;elatlonhdecay Iex—
region around the origin surrounded by an exponentially de:€Mely rapidly. We mention here ihat we have also

creasing distribution. There is no evidence for partial barrie€0MPuted the quantum and classical autocorrelation func-

localization by broken separatrices here, and thus the expdl©ons for the wave packet starting at (10,0) and found them
nential localization exhibited in Figs.(@ and 4d) can be to decay extremely rapidly with time. That only the quantum
attributed to dynamical localization. autocorrelation for the wave packet starting at (0,0) shows a

The classical distributions at the large time4757  Strong recurrent behavior is another indication that broken

shown in Fig. 4 are smooth and do not seem to indicate th&eparatrices act as strong barriers.
presence of the partial barriers. In order to display clearly the The partial-barrier localization depends on the condition
effect of the partial barriers on classical transport, we preserthat the phase-space area of the flux through the partial bar-
in Fig. 5 classical momentum distributions at earlier timesJriers, i.e., the size of the turnstile, is smaller than the Planck
The appearance of shoulders in these distributions indicateonstanth (or the effective Planck constantnz s in our
that the partial barriers formed of cantori and of broken sepacasg. In order to check on this, we have repeated the calcu-
ratrices slow down classical propagation through them. Adation for the wave packet located initially at (0,0) with a
time becomes large, however, the shoulders disappear gradew value 277 .¢=0.182 while keeping all other parameters
ally and the distribution becomes smooth. unchanged. The results of the calculation are displayed in
The role of the broken separatrices as a strong barrier tGigs. 8 and 9. As expected quantum momentum and position
the flow can be seen more clearly from Fig&)6and &h),  distributions are narrower than the corresponding classical
where the Husimi distributiofi26] of the wave packet at  distributions and thus quantum localization still exists in this
=450 are plotted for the initial wave packet positions of case, too. We note, however, that double-slope structure seen
in Figs. 4a) and 4b) are totally missing in the quantum
momentum and position distributions of FiggaPand 9b).
This indicates that the partial barriers formed from broken
separatrices and cantori are no longer impermeable barriers
quantum mechanically as well as classically. The quantum
localization indicated in Figs. 8 and 9 can thus be attributed
to dynamical localization.
In conclusion we have shown that the center-of-mass mo-
tion of an ion in a Paul trap interacting with a standing laser
, , X field exhibits both partial-barrier localization and dynamical
0 500 1000 1500 localization. Which type of localization dominates depends
t/n critically upon system parameters that determine the phase-
space area of the flux through the partial barriers and upon
FIG. 8. Same as Fig.(8) except 27 ;;=0.182. the initial location of the ion.
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